3 research outputs found

    Quasilinear Control: Multivariate Nonlinearities, Robustness and Numerical Properties, and Applications

    Get PDF
    Quasilinear Control (QLC) is a theory with a set of tools used for the analysis and design of controllers for nonlinear feedback systems driven by stochastic inputs. It is based on the concept of Stochastic Linearization (SL), which is a method of linearizing a nonlinear function that, unlike traditional Jacobian linearization, uses statistical properties of the input to the nonlinearity to linearize it. Until now in the literature of QLC, SL was applied only to feedback systems with single-variable nonlinearities that appear only in actuators and/or sensors. In this dissertation, my recent contributions to the literature of QLC are summarized. First, the QLC theory is extended to feedback systems with isolated multivariate nonlinearities that can appear anywhere in the loop and applied to optimal controller design problems, including systems with state-multiplicative noise. Second, the numerical properties of SL, particularly, the accuracy, robustness, and computation of SL, are investigated. Upper bounds are provided for the open-loop relative accuracy and, consequently, the closed-loop accuracy of SL. A comparison of the computational costs of several common numerical algorithms in solving the SL equations is provided, and a coordinate transformation proposed to improve most of their success rates. A numerical investigation is carried out to determine the relative sensitivities of SL coefficients to system parameters. Finally, QLC is applied to the optimal primary frequency control of power systems with generator saturation, and control of virtual batteries in distribution feeders. The expected impacts of this work are far-reaching. On the technical front, this work provides: i) a new set of theoretical and algorithmic tools that can improve and simplify control of complex systems affected by noise, ii) information to control engineers on accuracy guarantees, choice of solvers, and relative sensitivities of SL coefficients to system parameters to guide the analysis and design of nonlinear stochastic systems in the context of QLC, iii) a new computationally efficient method of addressing saturation in generators or virtual batteries in modern electric power systems, resulting in efficient utilization of resources in providing grid services. On the societal front, this work: i) enables technologies that rely on computationally-efficient algorithms for automation of complex systems, e.g., control of soil temperature for agriculture, which depends on multiple factors like soil moisture and net radiation, ii) allows effective coordination of controllable smart devices in people’s homes, so as not to hamper their quality of service, and iii) provides a stepping stone towards key societal challenges like combating climate change by facilitating reliable operation of the grid with significant renewable penetration

    Hierarchical, Grid-Aware, and Economically Optimal Coordination of Distributed Energy Resources in Realistic Distribution Systems

    No full text
    Renewable portfolio standards are targeting high levels of variable solar photovoltaics (PV) in electric distribution systems, which makes reliability more challenging to maintain for distribution system operators (DSOs). Distributed energy resources (DERs), including smart, connected appliances and PV inverters, represent responsive grid resources that can provide flexibility to support the DSO in actively managing their networks to facilitate reliability under extreme levels of solar PV. This flexibility can also be used to optimize system operations with respect to economic signals from wholesale energy and ancillary service markets. Here, we present a novel hierarchical scheme that actively controls behind-the-meter DERs to reliably manage each unbalanced distribution feeder and exploits the available flexibility to ensure reliable operation and economically optimizes the entire distribution network. Each layer of the scheme employs advanced optimization methods at different timescales to ensure that the system operates within both grid and device limits. The hierarchy is validated in a large-scale realistic simulation based on data from the industry. Simulation results show that coordination of flexibility improves both system reliability and economics, and enables greater penetration of solar PV. Discussion is also provided on the practical viability of the required communications and controls to implement the presented scheme within a large DSO
    corecore